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BoomerAMGAMG has two phases:

● Setup Phase
— Select Coarse “grids,”

— Define interpolation,

— Define restriction and coarse-grid operators
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●   Solve Phase

— Standard multigrid operations, e.g., V-cycle, W-
cycle, FMG, etc

●   Note: Only the selection of coarse grids does not
parallelize well using existing techniques!
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BoomerAMGWe must parallelize these
steps:

● The Setup Phase
— Coarse Grid Selection
— Construction of Prolongation operator, P
— Construction of coarse-grid operators by

Galerkin method, RAP, R=P’

● The Solve Phase
— Residual Calculation
— Relaxation
— Prolongation
— Restriction
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BoomerAMGParallelizing the Solve Phase

● The Solve Phase
— Residual Calculation

– entails Axpy matvec: y<-aAx+by.
– Relaxation: use hybrid Jacobi-Gauß-Seidel

(Jacobi for off-processor data, GS for on-
processor data)

— Prolongation
– requires Matvec

— Restriction
– requires MatvecT
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BoomerAMGBasic concept: Smooth
error means “small” residuals

● Error that is slow to converge obeys:
                                              ; hence

● Define: i depends on j  (and  j influences i ) if

● The set of dependencies of i is given by
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BoomerAMGChoosing the Coarse Grid

● Two Criteria

— (C1) For each          , each point                should
either be in     or should be strongly connected to
at least one point in

— (C2) C should be a maximal subset with the
property that no two C-points are strongly
connected to each other.

● Satisfying both (C1) and (C2) is sometimes
impossible.  We use (C2) as a guide while enforcing
(C1).

i ∈ F
Ci

C
Sj ∈ i
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BoomerAMGRuge AMG:
          start

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

3 5 5 5 5 5 3
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BoomerAMGRuge AMG:
          select C-pt 1

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

3 5 5 5 5 5 3
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BoomerAMGRuge AMG:
          select F-pt 1

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

8 8 8 5

8 8 8 5

5 5 5 3
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BoomerAMGRuge AMG:
          update F-pt neighbors 1

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

10 8 8 5

11 8 8 5

7 5 5 3
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BoomerAMGRuge AMG:
          select C-pt 2

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

10 8 8 5

8 8 5

7 5 5 3
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BoomerAMGRuge AMG:
          select F-pt 2

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

8 5

8 5

5 3
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BoomerAMGRuge AMG:
          update F-pt neighbors 2

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 11 11 10 9 5

10 5

11 5

6 3
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BoomerAMGRuge AMG: select C-pt, F-pts,
update neighbors 3

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 11 11 11 11 7
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BoomerAMGRuge AMG: select C-pt, F-pts,
update neighbors 4

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

7 11 10 9 8 8 5

10 8 8 5

13 11 11 7
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BoomerAMGRuge AMG: select C-pt, F-pts,
update neighbors 5

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

7 11 11 11 10 9 5

10 5

13 7
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BoomerAMGRuge AMG: select C-pt, F-pts,
update neighbors 6,7,8,9

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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BoomerAMGA second pass is needed
to enforce (C1)

● First-pass coarsening of 5 point
Laplacian , periodic boundary
conditions

● Numerous F-F dependencies
among points not sharing
common C-point

● A second “coloring” pass is
made, changing F-points to C-
points, as needed, to ensure
(C1).
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BoomerAMGA new approach:
the Cleary-LJP algorithm

● The Ruge algorithm is inherently sequential.

● A new algorithm was  proposed by Andrew Cleary ,
following parallel-independent-set algorithms
developed by Luby and later by Jones & Plasssman

● Resulting coarsening algorithm (Cleary-LJP) is fully
parallel, independent of the number of processors or
processor topology. Serial prototype early 98,
parallel code late 98.
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BoomerAMGCleary-LJP start

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.9 5.1

5.9 8.1 8.9 8.9 8.4 8.2 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.9 5.9

5.0 8.8 8.5 8.6 8.7 8.9 5.3

3.2 5.6 5.8 5.6 5.9 5.9 3.0
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BoomerAMGCleary-LJP select 1

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.9 5.1

5.9 8.1 8.9 8.9 8.4 8.2 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.9 5.9

5.0 8.8 8.5 8.6 8.7 8.9 5.3

3.2 5.6 5.8 5.6 5.9 5.9 3.0
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BoomerAMGCleary-LJP:
 remove and update 1

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 5.0 5.9 2.4

5.2 8.0 5.5 3.2 1.6

5.9 8.1 3.9 1.4 3.2 2.9

5.7 8.6 5.3 3.8 5.3 8.1 5.0

2.3 3.7 5.3 8.4 5.3 3.9 2.9

3.5 8.6 3.7

2.8 5.6 2.9
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BoomerAMGCleary-LJP:
 select 2

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 5.0 5.9 2.4

5.2 8.0 5.5 3.2 1.6

5.9 8.1 3.9 1.4 3.2 2.9

5.7 8.6 5.3 3.8 5.3 8.1 5.0

2.3 3.7 5.3 8.4 5.3 3.9 2.9

3.5 8.6 3.7

2.8 5.6 2.9
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BoomerAMGCleary-LJP:
 remove and update 2

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 2.0

5.2 8.0 3.5

2.9 3.1 1.9

1.3 3.8 1.3

1.3 3.4 1.3
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BoomerAMGCleary-LJP:
 select 3

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 2.0

5.2 8.0 3.5

2.9 3.1 1.9

1.3 3.8 1.3

1.3 3.4 1.3



VEH 26CASC

BoomerAMGCleary-LJP:
 final grid

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures
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BoomerAMGCleary-LJP results

Cleary-LJP Coarsening
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● 3D 7pt Laplacian,
125,000 points/proc.

● Setup phase shows
poor scalability

● Solve phase shows
relatively good
scalability

● Operator complexity
(ratio: total matrix
nonzeros, all grids,
to nonzeros, fine
grid) quite high ~20-
25
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BoomerAMGCleary-LJP results

Procs. Setup Op. Cplx   Setup  Op. Cplx Setup Op. Cplx
1 19 18.37 16 1.83 6 1.94
2 48 20.01 44 1.89 7 1.94
4 142 21.89 138 2.01 8 1.95
8 354 23.45 318 2.16 11 1.95

16 681 24.41 595 2.19 14 1.96
32 1405 25.39 1009 2.31 14 1.96
64 2992 26.39 1975 2.93 18 1.96

128 3030 27.06 2010 2.43 32 1.96
256 49 1.96

Procs Solve      C.F. Solve      C.F. Solve      C.F.
1 49 0.176 22 0.116 22 0.312
2 55 0.199 24 0.147 23 0.338
4 61 0.217 25 0.167 24 0.391
8 67 0.267 28 0.271 24 0.382

16 75 0.334 30 0.277 24 0.438
32 82 0.381 33 0.307 24 0.436
64 94 0.456 36     DIV 25 0.472

128 97 0.486 41     DIV 29 0.473
256 31 0.551

7 pt 3D Laplacian 27 pt 3D Laplacian 9 pt 2D Laplacian
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BoomerAMGParallel Ruge Coarsening

● Another approach to coarsening in parallel: perform
the standard Ruge algorithm on each processor.
Various treatments possible at processor
boundaries.

● Yields processor dependent coarsenings, and will
not produce the same reults for different numbers of
processors.

● The “measure” of each point should include the
number of off-processor connections, even when
coarsening within processor.
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BoomerAMGParallel Ruge coarsening:
boundary treatment:  I

Perform first and second
passes on each processor

FF ⇔

C

Problem: Leaves
 dependencies without
mutual    -points

P0 P1

P0 P1

Method 1:  Do nothing.
Accept the coarsening
provided by the
independent processors.
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BoomerAMGParallel Ruge
 coarsening results

Procs. Setup Op. Cplx
1 14 4.91
2 26 5.25
4 63 5.71
8 153 6.23

16 328 6.75
32 561 6.98
64 999 7.34

128  

Procs Solve      C.F.
1 36 0.065
2 40 0.081
4 43 0.111
8 48 0.210

16 389 0.246
32 3433 0.605
64 3352 0.384

128   

7 pt 3D Laplacian
Ruge coarsening is much
faster and yields much better
complexities than Cleary-LJP
on the 7-pt Laplacian

Solution: hybrid coarsening

Note that the solve times
jump by orders of magnitude
as problem grows. Parallel
Ruge leads to large
“coarsest” grids with direct
solve.
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BoomerAMGParallel Ruge-JLP Hybrid:
no boundary treatment

Procs Setup Op. Cplx   Setup  Op. Cplx Setup Op. Cplx
1 6 4.39   3  
2 11 5.46 21 2.54 4 1.35
4 25 6.79 60 2.76 4 1.35
8 65 8.51 153 3.13 4 1.35

16 148 8.89 271 3.21 5 1.35
32 292 8.92 506 3.45 5 1.35
64 456 8.52 1089 3.81 6 1.35

128 488 8.38 1217 3.93 8 1.35
256 12 1.49

Procs Solve      C.F. Solve      C.F. Solve      C.F.
1     17 0.203
2 20 0.091 29 0.123 18 0.599
4 24 0.138 32 0.145 18 0.612
8 64 0.279 38 0.192 19 0.61

16 147 0.385 41      DIV 19 0.606
32 293      DIV 54      DIV 19 0.607
64 456      DIV 62      DIV 20 0.627

128 488      DIV 69      DIV 20 0.644
256     21 0.472

7 pt 3D Laplacian 27 pt 3D Laplacia 9 pt 2D Laplacia



VEH 33CASC

BoomerAMGParallel Ruge coarsening:
boundary treatment  (Ruge2b)

Perform first pass on each
processor

P1P0

Perform second pass
locally on each processor,
augmented by boundary
points from neighbor

Choices must be made
about how to resolve
conflicting decisions
among processors
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BoomerAMGParallel Ruge coarsening:
boundary treatment  (Ruge2b)
Procs. Setup Op. Cplx   Setup  Op. Cplx Setup Op. Cplx

1     3 1.33
2 15 5.31 40 2.72 4 1.33
4 45 6.53 164 3.19 5 1.34
8 121 8.06 460 4.37 6 1.36

16 254 8.09 732 4.74 7 1.37
32 527 8.62 1232 5.51 10 1.38
64     15 1.38

128 1058 9.07   23 1.38
256 39 1.51

Procs Solve      C.F. Solve      C.F. Solve      C.F.
1     17 0.121
2 16 0.122 31 0.111 18 0.120
4 24 0.211 42 0.158 19 0.268
8 29 0.269 54 0.216 19 0.292

16 31      DIV 61 0.257 20 0.347
32 37 0.399 88      DIV 20 0.404
64    20 0.404

128 48      DIV   25 0.388
256 26 0.485

7 pt 3D Laplacian 27 pt 3D Laplacian 9 pt 2D Laplacian
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BoomerAMGParallel Ruge coarsening:
boundary treatment (Ruge3)

Perform first and second
pass on each processor

P0 P1

Perform a third pass, (a
second “second pass”),
only on those points
adjacent to processor
boundaries

Choices must be made about
how to resolve conflicting
decisions among processors
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BoomerAMGParallel Ruge coarsening:
boundary treatment  (Ruge3)

Procs. Setup Op. Cplx   Setup  Op. Cplx Setup Op. Cplx
1     3 1.33
2 17 7.62 36 2.35 3 1.33
4 70 12.07 128 3.48 4 1.35
8 249 16.76 365 4.88 5 1.36

16 479 16.69 684 5.82 6 1.37
32 1008 16.13 1423 7.31 8 1.38
64 2008 15.25   17 1.38

128    21 1.39
256 40 1.51

Procs Solve      C.F. Solve      C.F. Solve      C.F.
1     17 0.121
2 26 0.128 27 0.119 18 0.121
4 38 0.158 44 0.163 19 0.141
8 53 0.217 64 0.215 19 0.225

16 62 0.233 78 0.238 20 0.336
32 76 0.348 112      DIV 20 0.312
64 90      DIV   22 0.318

128     23 0.385
256 26 0.474

7 pt 3D Laplacian 27 pt 3D Laplacian 9 pt 2D Laplacian
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BoomerAMG
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BoomerAMG27 pt 3D Laplacian

Setup Times Solve Times
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BoomerAMG9 pt 2D Laplacian

Setup Times Solve Times

C-LJP     Ruge      Ruge (2b)     Ruge (3)
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BoomerAMGConclusions

● Testing is still needed to implement the algorithms
efficiently;  to determine better ways of treating
processor boundaries, operator complexities, and
growing convergence factors.

● Future computer science plans include load
balancing and efficient cache useage.

● Future algorithmic development centers on
implementing “system” solvers and determining MG
components using the finite-element stiffness
matrices

● This work was performed under the auspices of the U. S. Department of Energy
by Lawrence Livermore National Laboratory under contract number: W-7405-
Eng-48. Release number UCRL MI 133583


